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Abstract-For an axially compressed elastic-plastic cylindrical shell with elliptical cross-section the buckling
behaviour is investigated, The initial post-bifurcation behaviour of a perfect shell compressed into the plastic
range is determined in terms of an asymptotic expansion, The behaviour of shells with initial stress free
imperfections is computed numerically using an incremental procedure, For shells with sufficiently eccentric
cross-sections elastic analyses predict final collapse loads considerably above the bifurcation load, but the
present numerical results show that elastic-plastic material behaviour reduces these collapse loads to such an
extent that the elastic-plastic shells are moderately imperfection-sensitive.

I. INTRODUCTION

The oval cylindrical shell under axial compression represents an interesting example of more
complex post-buckling behaviour in the elastic range. Hutchinson[l] has shown that the initial
post-buckling behaviour predicts a severe imperfection-sensitivity. On the other hand, numerical
computations of the advanced post-buckling behaviour by Kempner and Chen [2,3] and later by
Almroth, Brogan and Marlowe[4] have shown that in the post-buckled range load carrying
capacities above the bifurcation load are attained, provided the cross-sections are sufficiently
eccentric. Thus, the post-buckling equilibrium load initially decreases strongly, but then starts to
grow again until final collapse occurs above the primary buckling load. This behaviour has also
been confirmed by experiments [5,6]. In the above mentioned investigations the cross-sectional
shapes are either elliptical [1, 4, 5] or a different oval shape [1-3, 6] that is also considered by
Kempner and Chen in a recent investigation of an oval cylindrical shell under combined bending
and axial compression [7].

The present paper gives an investigation of the post-buckling behaviour of an oval axially
compressed cylinder made of an elastic-plastic material. The critical bifurcation load and the
corresponding mode are determined by a numerical procedure, and based on this solution
Hutchinson's asymptotic theory [8, 9] is employed to obtain asymptotic expressions for the initial
post-bifurcation behaviour in the plastic range and for the initial propagation of elastic unloading
regions after bifurcation. The behaviour in the advanced post-buckling range and the behaviour
of initially imperfect shells is computed numerically by a linear incremental method. The
computations show that elastic-plastic material behaviour eliminates the high post-buckling load
carrying capacity known from the elastic range.

2. PROBLEM FORMULATION

The cross-sectional shape of the oval cylindrical shell considered here is taken to be elliptical
with a major axis of length a and a minor axis of length b (Fig. 1). Then, points on the middle
surface can be described by the relations

(y, z) =(- a cos l/I, b sin l/I), (2.1)

in terms of a parameter l/I. At a point l/I = l/Is the circumferential distance s from the point l/I = 0
and the radius of curvature R.. respectively, are given by the expressions

(2.2)

(2.3)
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Fig. 1. Cylindrical shell with elliptical cross-section.

In the following we let a point on the shell middle surface be identified by the coordinates
(x I, X 2) = (x, s) and denote the displacements of the shell middle surface by v" in the directions
of the surface base vectors and W in the direction of the outward surface normal. The shell
equations used are those given by Niordson[lO] with the nonlinear membrane strain tensor

E"/3 = ~ (v",/3 + V/3.,,) - d"/3w +~ a Y~ (vY." - dy"w )(v~./3 - d~/lw) +~ (w." + d"Yvy)( W,/3 + d/3Yv~)

(2.4)

and the linear bending strain tensor

(2.5)

Here a"/3 and d"/3 are the metric tensor and the curvature tensor, respectively, of the undeformed
middle surface, and ( ),,, denotes covariant differentiation, These strain measures are identical
with those given by Koiter[lI] except for small differences in the bending strain measure of the
order of d" y EY /3'

A small strain theory of plasticity is used, in which the three dimensional stress rates and
strain rates in the shell material are assumed to be related by the equations

(2.6)

with L ijkl = L jlkl = L kli
j
, where a dot denotes differentiation with respect to some monotonically

increasing parameter that characterizes the loading history. Here, Latin indices range from 1 to 3,
while Greek indices range from 1 to 2. The instantaneous moduli L ijkl depend on the stress
history, and here it is assumed that they have two branches, one corresponding to plastic loading,
the other to elastic unloading. The stress state in the shell is approximately plane. Thus, only the
in-plane stresses enter into the stress-strain relations, and we can write

where the in-plane moduli are given by

L ,,/333L y~33

LA "f3y~ = L ,,/3-,8 - =---::-c;':;:;'
L 3333

(2.7)

(2.8)

and the strain rate at distance x 3 outward from the shell middle surface is approximated by

(2.9)

Using the usual definitions of the membrane stress tensor N"/3 and the moment tensor M"/3,
we find the incremental relations

(2.10)



where

Buckling of elastic-plastic oval cylindrical shells 685

(2.11)

The theory of plasticity employed here is small-strain J2 flow theory with isotropic hardening.
In the three dimensional xi-coordinate system with metric tensor gij the instantaneous moduli of
J2 flow theory are

(2.12)

where E and I' are Young's modulus and Poisson's ratio, respectively, and

(2.13)

1

3 EIE,-1
"2 EIE, -(1-21')/3' for (7e = ((7e)max and cTe > 0

f(ue ) = (2.14)
0, for (7e < ((7e)max or cTe <0.

Here the tangent modulus E, is the slope of a uniaxial stress-strain curve, and the initial value of
(Ue)max is the yield stress (7y. The uniaxial stress-strain behaviour chosen is a piecewise power law
with continuous tangent modulus

for (7 :5 (7y

(2.15)

for (7 > U y

where n is the strain hardening exponent.

3. PLASTIC BIFURCATION AND POST-BIFURCATION BEHAVIOUR

The general treatment of uniqueness and bifurcation in elastic-plastic solids, given by
Hill [12, 13], has recently been extended by Hutchinson [8, 9] to a general asymptotic theory of the
initial post-bifurcation behaviour in the plastic range. In this asymptotic theory the load in the
vicinity of the bifurcation point is expanded in terms of the buckling mode amplitude, similar to
what is done in Koiters elastic post-buckling theory [14], but the analysis in the plastic range is
further complicated by the necessity to account for elastic unloading.

In the present paper the specialization of Hutchinson's theory to Donnell-Mushtari-Vlasov
shell theory[9] is used to determine the initial post-bifurcation behaviour. Thus, the bifurcation
and asymptotic results are based on retaining only one of the nonlinear terms, 1/2w,,,,w.f'l' in
the expression (2.4) for E",f'l and only the first term, W.af'l' in the expression (2.5) for Kaf'l' The
prebuckling stress state in a perfect oval shell consists of a constant uniaxial stress (711 = '\uoll at
every point of the shell, and the small values of W~2 prior to bifurcation are neglected. Later
comparison with the numerical results shows that the simplified bifurcation analysis agrees
reasonably with that based on more accurate shell theory.

The bifurcation mode for the long axially compressed oval shell is periodic in the axial
direction of the form

(I) U . Qv 1= (s) sm ( x)

(I)

V2 = V(s) cos (Qx)

(I)

w= W(s) cos (Qx)

(3.1)
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The mode shape in the circumferential direction is determined numerically by making a finite
element approximation of the functions U(S), V(s) and W(s) in terms of Hermitian cubics. The
critical bifurcation mode and the critical load parameter Ac correspond to the smallest value of A
for which a non-trivial solution exists of the homogeneous equations

81=0 (3.2a)

(3.2b)

11 II (l) (11 (11 (II
where No = huo ,and N'13 and M'13 are related to € 1'8 and K1'8 by eqn (2.10), with the plastic
branch of the tensor of moduli used everywhere. The limits SM and XM of the integration area are
chosen according to the smallest repeatable intervals in the deformation pattern.

Specially for the circular cylindrical shell compressed into the plastic range the critical
bifurcation mode is axisymmetric. Using the expressions E" E2, and En for the physical values
of the plastic branches of i 1111, i 2222 and i 1122, respectively, at the bifurcation point, and using
D 1 = E 1h 3/12, we easily find the critical stress Uc and axial wave number Qc for the
axisymmetric mode in a circular cylinder given by

(3.3)

For the elliptical cylinder the critical stress UE and the corresponding instantaneous moduli
are determined iteratively from eqn (3.2), and the axial wave number QE is determined
numerically as the value of Q that minimizes Ac • The bifurcation mode is a short-wave pattern in
the axial direction with buckling deflections confined mainly to the regions of minimum
curvature. Buckling loads corresponding to modes that are symmetric with respect to the minor
axis and asymmetric with respect to the major axis are nearly identical with the buckling loads
corresponding to modes symmetric with respect to both axes, whereas somewhat higher buckling
loads are obtained for modes asymmetrie with respect to the minor axis. In the following we shall
only consider modes symmetric with respect to both axes. The variation of the critical stress and
the axial wave length with aspect ratio b10 is shown in Fig. 2 for elliptical cylinders with
Rblh = 200, where Rb = a 21b is the radius of curvature (2.3) at the ends of the minor axis. Even
for rather small aspect ratios there is a reasonable agreement with the simple engineering
approximation that bifurcation occurs when the stress reaches the critical stress for a circular
cylinder with radius to thickness ratio equal to Rb 1h and made of the same material.

The initial post-buckling behaviour is given by an asymptotically exact expression for the load

.8 b/a 1.062
1.00'---~--~-~--~-'=~

o

1.05

1.15 r----r-.------~----r--~---,

~
clC
1.10

Fig. 2. Critical stress and corresponding axial wave length in elliptical cylinders with aspect ratio bla.
(R.lh = 200, aduy = 1.034. uy/E =0.0025, II OJ).
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parameter A in terms of the buckling mode amplitude ~ of the form [9]

687

(3.4)

for ~ ~ O. Here, we normalize the buckling mode so that for { = I the maximum deflection w is
equal to the shell thickness. The initial slope A1 is determined from the requirement that initially
at bifurcation plastic loading occurs everywhere in the current plastic zone, except in at least one
point where neutral loading takes place. As ~ grows, a region of elastic unloading spreads into the
material from each point of neutral loading, and the effect of these elastic unloading regions is
accounted for in the third term of the expansion (3.4). Figure 3 indicates the shape of these elastic
unloading regions that start on the inside of the shell at the points of maximum inward deflection.

When unloading starts at isolated points, as shown in Fig. 3, we find f3 = 1/3, whereas for the
limit of the circular cylindrical shell, where unloading starts along circles on the inside surface,
we find f3 = 2/5. Since in all cases we find A2 < 0, the truncated expansion (3.4) can be used to
estimate the maximum support load Amax and the corresponding buckling mode amplitude {max. It
should be emphasized that the values of Amax and ~max obtained in this manner are not asymptotic
in any sense, since the maximum always occurs at a finite, perhaps small, valur of ~. The
bifurcation analysis and the initial post-bifurcation expansion have been computed with 5,10 and
20 elements, respectively, to represent one quarter of the shell circumference, but only minor
differences result from this variation of the mesh. The values of the constants lIE, At, A2 , Amax and
~max given in Table 1 for a number of cases, have been computed with 10 elements.

iA as,.~
'-'-'-'

Fig. 3. Shape of elastic unloading regions (shell thickness exaggerated).

b/a Rb/hi a/E n GE/Gy A1 /A c '2/\ c B Amax/\c "max I
.5 200 .0025 10 1. 058 2.75 -11. 7

1
1/3 1.0037 1.0054

.5 200 .0025 41.131 2.83 -10.911/3 1.00521.0074
i I I

.8 200 .0025 10 1.04413.02 :-14.9!1/31 1.0027 .0035

.8 200 .0025 4 1. 098 3.07 '-13.4 1/3 1.0039 .0051

1.0 200 .0025 10 1. 034 3.23 -22.7 2/~11.0030 .0033

I
1.0 I 200 .0025 4 1. 078 3.27 -19.4 2/5 1.0047 .0050

Table I. Constants in asymptotic post-bifurcation expansion for various elliptical cylinders made of material
with u,IE = 0.0025. II = OJ

In the cases considered here bifurcation does not occur far into the plastic range, and thus the
bifurcation predictions of J2-flow theory are only a little above those of J2-deformation theory.
For the cylinders of Table 1 this discrepancy is below one half per cent.

4. NUMERICAL COMPUTATION OF IMPERFECTION-SENSITIVITY

The behaviour of a shell with initial imperfections is computed numerically by an incremental
procedure. At each stage of the loading history incremental equilibrium is expressed in terms of the
following variational principle: Among all displacement increment fields that satisfy the
kinematical boundary conditions, the actual displacement increments satisfy

81=0 (4.1a)

(4.1b)
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Integrations in the circumferential direction are taken over one quarter of the circumference,
since consideration is restricted to deformations that are symmetric with respect to both the
minor and the major axes. In the axial direction the deformation pattern is taken to be periodic,
and integration is performed over one half period, assuming symmetry conditions at x = O,XM.
The moduli H(;~-ylJ are defined by (2.11), Na/3 is the current membrane stress tensor, I.. is the
prescribed increment of the load parameter, and expressions for the incremental strain quantities
in terms of current displacements and displacement increments are obtained from (2.4) and (2.5).

The numerical method employed to solve eqn (4.1) is based on expanding the displacements in
terms of trigonometric functions in the axial direction, and using a one-dimensional finite element
approximation in the circumferential direction. Thus, the displacements are taken of the form

(4.2)

where the functions U(iI(S), V(iI(S) and W(i)(s) are approximated by Hermitian cubics within
each finite element.

To avoid numerical difficulties around the maximum load a special technique is employed,
which is based on using a few of the nodal displacement increments as initially prescribed
increments. For this purpose we chose the constant axial edge displacement V = V(lI(S) and one
normal node deflection W(for example the deflection in the mode W(iI(S) corresponding to the
bifurcation mode wavelength, taken at the point of maximum deflection). Now, the variational
eqn (4.1) is solved with two different sets of prescribed displacement increments, V = I, W= 0
and V =0, W= I, and finally these two finite element solutions are used as trial functions in a
Rayleigh Ritz solution to obtain the values of V and Wcorresponding to a given load increment
1... In these two Rayleigh Ritz equations instead of always prescribing I.. we prescribe that of the
three parameters V, W, I.. that is numerically largest in the previous increment and solve for the
two remaining parameters. This procedure also makes it easy to pass maxima, at which both ;"
and V change sign nearly simultaneously, as is often the case for nearly perfect axially
compressed cylinders in the vicinity of the bifurcation point. It should be emphasized that
introducing the additional solution of (4.1) and the Rayleigh-Ritz solution adds very little to the
computer time required for each increment.

The integrals in eqns (4.1) and (2.11) are evaluated numerically as follows. In the
circumferential direction 4 point Gaussian quadrature is used within each element, while in the
axial direction the interval x = O,XM is divided in as many subintervals as the largest number of
half-waves in (4.2) and 4 point Gaussian quadrature is used within each subinterval. Through the
thickness Simpson's rule is used, with 7 points.

The active branch of the tensor of moduli (2.8) to be used in (2.11) is determined in each
increment as follows. If the stress state at an integration point is on its current yield surface, the
plastic branch is taken to be active. If O'e for that integration point turns out to be negative, the
elastic branch is taken to be active in the next loading increment. This procedure is sufficiently
accurate if small increments are used and if the transition from loading to unloading, or vice
versa, occurs only once or twice during the loading history.

Results of numerical computations are shown in Figs. 4-7. The initial stress free
imperfections considered are in the shape of the cirtical bifurcation mode with tJ denoting the
ratio between the amplitude and the shell thickness. The figures give the load parameter A as a
function of the end-shortening d, with these variables normalized against their values Ae and de
at the bifurcation point according to DMV shell theory.

The first computations for shells with aspect ratio b /a = 0.5 (Figs. 4-6) are made with N = 3
in eqn (4.2) by choosing the wave numbers qz = QE, q3 = 2QE, of which the first is that of the
bifurcation mode and of the specified initial imperfection. It has been checked for a few of the
computations that the result is not changed by introducing an extra mode with q4 = QE /2 and with
a small initial deflection tz = 0.1(,. In the circumferential direction 5 elements are used, which is
judged sufficient since only rather little is gained compared with a 2 element computation.

The post-bifurcation behaviour of the perfect shell is computed numerically as the behaviour
of a shell with very small initial imperfections. For the oval shells considered in Figs. 5 and 6 that
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Fig. 4. Load vs end-shortening for elliptic cylindrical shell that bifurcates in the elastic range (b la = 0.5.
14 Ih = 286. ITE lIT, = 0.92. IT, IE =0.0025. n = 10. I' =OJ).
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Fig. 5. Load vs end-shortening for elliptic cylindrical shell that bifurcates in the plastic range (b la = 0.5.
R.lh =2oo.ITEIIT, =1.058.IT,IE =0.0025. n = 10, I' =OJ).
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Fig. 6. Load vs end-shortening for elliptic cylindrical shell that bifurcates in the plastic range (b la = 0.5,
R.lh = 200, ITEIIT, = 1.131,IT,IE =0.0025,n =4,1' =OJ).
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"Perfect"

yield

1.0 15 AlAe 20

Fig. 7. Load vs end-shortening for circular cylindrical shell that bifurcates in the plastic range (Rlh = 200,
ucluy = 1.034, uylE =0.0025, n = 10, II = OJ).

bifurcate in the plastic range the numerical results confirm the general trends of the asymptotic
analysis, although the numerically obtained values of Amax/Ac and ~max are somewhat larger than
those given in Table I. Also the initial spreading of elastic unloading regions starting from the
points of maximum inward deflection, as shown in Fig. 3, is confirmed numerically. Furthermore,
the numerical computations show that after a small finite mode deflection a second set of
unloading regions start to spread into the material from the points of maximum outward buckling
deflection.

The shell in Fig. 4 bifurcates in the elastic range with a slightly lower buckling load predicted
by the more accurate shell theory than that of DMV-theory. Plastic yielding starts very shortly
after bifurcation, but even so the steep initial descent of the post-buckling path succeeded by an
interval of increasing load is found in agreement with the behaviour of the elastic shell. However,
due to the effect of plasticity this secondary increase levels off before again reaching the
bifurcation load, and a second maximum is passed. For an imperfection (. = .3 the initial part of
the elastic solution is shown to illustrate the well-known carrying capacity above the level of
bifurcation, where the load is mainly carried by the strongly curved regions in which buckles
grow less rapidly. When the shell material is elastic-plastic, yielding starts quite early at the peaks
of the buckles in the region of minimum curvature, and a maximum is reached shortly after the
strongly curved regions at the ends of the major axis have started to yield.

The shell considered in Fig. 5 is somewhat thicker than the first shell, so that bifurcation
occurs in the plastic range. Now, the sharp initial drop in post-bifurcation load has vanished, and
the load decreases monotonically with increasing end-shortening after bifurcation. The
computations for shells with various imperfection amplitudes show that the carrying capacity
above the bifurcation load known from elastic shells is now replaced by a moderate
imperfection-sensitivity. This imperfection-sensitivity is still far less severe than that of an
elastic-plastic spherical shell under external pressure [15], but is comparable with the
imperfection-sensitivity of an axially compressed rectangular plate made of the same
elastic-plastic material [16].

For a more strain-hardening material, with n = 4 instead of n = 10, the same shell is less
imperfection-sensitive (Fig. 6), but still the load carrying capacity does not exceed the bifurcation
load. In this case the post-bifurcation load of the perfect shell varies initially like that of Fig. 5,
but then starts to increase slightly again before reaching a second maximum.

As the aspect ratio b Ia increases towards unity from the relatively small value, b Ia = 0.5,
considered in the previous figures, the post-buckling load carrying capacity above the bifurcation
load vanishes for elastic shells, and accordingly the imperfection-sensitivity increases for
elastic-plastic shells. Then the earlier mentioned extra mode with double wavelength in the axial
direction becomes increasingly important, since the maximum load computed by the usual three
modes in (4.2) will be reduced due to a bifurcation into the double wavelength mode with a
short-wave pattern in the circumferential direction. This behaviour has been found for a shell
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with aspect ratio b fa = 0.9 by a computation with relatively few elements. However, in order to
avoid the rather costly computations with N = 4 in eqn (4.2) and with sufficiently many finite
elements in the circumferential direction, it is preferred here to show a few results for the special
case of a circular cylinder.

The circular cylindrical shell considered in Fig. 7 has an axisymmetric imperfection of
amplitude t. and an asymmetric circumferentially periodic imperfection of amplitude t2' such
that a sufficiently accurate computation can be made with only two elements over one half wave
length in the circumferential direction. These two types of imperfections are specified for q2 = Qc
and q4 = Qcl2, respectively, in eqn (4.2), and the asymmetric imperfection is chosen with
approximately the same circumferential as axial wave length. The perfect shell behaves initially
as predicted by the asymptotic analysis (Table 1), with bifurcation into the axisymmetric mode
and a small buckling mode deflection before the maximum load is reached. However, slightly
after the maximum load a secondary bifurcation occurs into the asymmetric mode, which results
in a rapid decrease of post-buckling load rather similar to the behaviour known from the elastic
range. The curve computed for tl = - 0.1 and t2 = 0.01 shows a very strong sensitivity to small
initial imperfections, which is entirely due to interaction of the axisymmetric and asymmetric
modes used as imperfections. However, for the larger imperfections, t. = - 0.3 and t2 = 0.03, the
growth of the chosen asymmetric mode ceases shortly after initial yielding, and the axisymmetric
deformation is completely dominant around the maximum load.

5. CONCLUSION

An analysis of long oval cylindrical shells under axial compression has shown that the
post-buckling behaviour known from the elastic range is significantly changed by the effect of
plastic yielding. For elastic shells with sufficiently eccentric cross-sections the unstable initial
post-buckling behaviour is succeeded by an interval of increasing load as the buckles spread from
the ends of the minor axis into the regions of higher curvature, and the final collapse load is above
the initial bifurcation load. In the plastic range the strongly curved regions are weakened by the
material non-linearity even before the buckles spread into these regions, and therefore the
reserve of post-buckling stiffness is not available in cases where plastic yielding takes place.
Thus, the high post-buckling support load of the eccentric, elastic shell is replaced by a moderate
imperfection-sensitivity of the plastic shell. For decreasing eccentricity of the cross-section the
imperfection-sensitivity increases to be rather strong in the special case of a circular cylindrical
shell.
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